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Abstract
A fluctuation theorem has recently been derived for systems described by
univariate birth–death equations or chemical master equations (Seifert U 2004
J. Phys. A: Math. Gen. 37 L517–21). We discuss an inequality that follows from
this theorem. Focusing on the case of Poissonian stationary distributions, we
show that this inequality can also be derived from a deterministic rate equation,
in the limit of large system size. We relate these results to recent work on
transitions between nonequilibrium stationary states.

PACS number: 05.40.−a

In a recent letter [1], Seifert has derived a fluctuation theorem pertaining to processes that
can be described by univariate birth–death equations or chemical master equations, where the
system in question is driven away from a stationary state by the external variation of a control
parameter. The analysis in [1] is simple and elegant, and serves to emphasize the ubiquity of
fluctuation theorems.

The present comment discusses an inequality implied by Seifert’s fluctuation theorem,
which we analyse in detail for the special case when the stationary states of the system
are Poissonian. This inequality, given by equation (14), is the mathematical expression of an
intuitively obvious notion: when parameters of a system are varied externally, the system needs
some time to catch up with the stationary state corresponding to the new parameter values.
Equation (14) resembles a thermodynamic inequality, in the sense that it constrains transitions
between stationary states, and this constraint is expressed in terms of the net change in a state
function. We will show that equation (14) follows immediately from Seifert’s fluctuation
theorem, and that in the thermodynamic limit—where statistical fluctuations can be ignored—
the same result can be obtained from a deterministic rate equation. Finally, we will relate this
work to results on transitions between nonequilibrium stationary states, in particular to the
work of Shibata [2].

Let us begin with a brief review of the central result of [1]. Consider a system that can
exist in any one of a countable number of states, labelled by the integer n � 0. In birth–death
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processes or chemical reactions, nt represents the number of members contained in some set
at time t. This number changes by unit increments as members of the set are born or die, and
we assume that the process is governed by the master equation

∂tpn = w+
n−1(λ)pn−1 + w−

n+1(λ)pn+1 − [
w+

n(λ) + w−
n (λ)

]
pn. (1)

Here pn(t) is the probability that the system is in state n at time t; w±
n (λ) represent the birth

(w+) and death (w−) transition rates and λ is some control parameter on which these rates
depend. When λ is held fixed, the system relaxes to a stationary state ps

n(λ) that satisfies the
detailed balance condition

ps
n

/
ps

n−1 = w+
n−1

/
w−

n . (2)

This condition, along with normalization
(∑

n pn = 1
)
, determines the set of probabilities,

ps
n(λ), characterizing the stationary state1. By analogy with the Boltzmann–Gibbs distribution,

we can define ‘energy levels’ associated with this stationary state:

ε(n; λ) ≡ −ln ps
n(λ). (3)

The fluctuation theorem derived by Seifert then pertains to the statistical ensemble of
trajectories obtained by repeatedly initializing the system in the stationary state corresponding
to λ0, and then allowing the system to evolve, stochastically, from t = 0 to a final time t = τ ,
as the control parameter is varied according to some pre-determined protocol λt . The theorem
is stated by the following equation:〈

exp

[
−

∫ τ

0
ε′(nt ; λt )λ̇t dt

]〉
= 1. (4)

Here ε′ ≡ ∂λε; λ̇ ≡ dλ/dt ; and 〈· · ·〉 denotes an average over the statistical ensemble of
trajectories nt .

A special case, discussed in detail in [1], occurs when the transition rates obey

w+
n−1

/
w−

n = ns/n, (5)

for some positive constant ns . This condition is equivalent to stating that there exists a positive
function fn > 0 such that the transition rates are given by

w+
n = nsfn, w−

n = nfn−1. (6)

In this case, the stationary distribution is Poissonian,

ps
n = 1

n!
e−ns

(ns)n, (7)

and ns is the mean of this distribution.
It is convenient to have in mind a simple example described by the above formalism.

Consider a closed, flat two-dimensional region (box) of area A, and imagine that particles are
born in this region at an average rate νA; thus, ν is the average birth rate per unit area. Once a
particle is born, it dies with a probability rate γ : if the particle is alive at a certain time t, then
γ dt is the probability that it will die within the next infinitesimal time interval dt . Letting n
denote the number of particles inside the region, this process is governed by equation (1) with

w+
n = νA, w−

n = γ n. (8)

This set of transition rates obeys equation (5) (equivalently, equation (6) with fn = γ ), hence
the stationary distribution is Poissonian with mean ns = νA/γ .

1 In order for a well-defined stationary state to exist, the ratio w+
n−1/w

−
n must decay to zero sufficiently rapidly

(as n → ∞) that the normalization condition
∑

n ps
n = 1 can be satisfied. Throughout the letter we assume this

condition is satisfied.
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This example can be generalized by letting ν and γ depend on n:

w+
n = νnA, w−

n = γnn. (9)

In other words, the probability rate at which particles are born or die is allowed to depend on
the current number of particles in the box. In the absence of further assumptions regarding the
functions νn and γn, equation (9) provides a completely general example of the sort of process
governed by equation (1). In particular, the stationary distribution need not be Poissonian.

Finally, if we want the process described by the transition rates of equation (9) to lead
to a Poissonian distribution, with mean value ns , then equation (5) implies the existence of a
function fn > 0 such that

νnA = nsfn, γn = fn−1. (10)

The transition rates given by equation (8) represent a special case (fn = γ = νA/ns) of
equation (10).

In the preceding four paragraphs, starting with equation (5), we have notationally
suppressed the dependence of the transition rates on the control parameter λ. If we now
explicitly assume that the functions νn and/or γn depend parametrically on λ, then we have a
situation of the sort addressed in [1], to which equation (4) ought to apply.

By the convexity of the function ex (see, e.g., [3]), equation (4) implies the inequality〈∫ τ

0
ε′(nt ; λt )λ̇t dt

〉
� 0. (11)

In the remainder of this letter we will analyse this inequality, restricting ourselves to the
situation in which the stationary distribution ps

n(λ) is Poissonian for all values of λ. Thus,
νn(λ) and γn(λ) satisfy equation (10) for some ns(λ) and fn(λ). Combining equations (3) and
(7), we get

ε(n; λ) = ns(λ) − n ln ns(λ) + ln n! (12)

and

ε′ =
(

1 − n

ns

)
∂λn

s. (13)

Inserting this into equation (11) and rearranging terms yields∫ τ

0

ṅs

ns
〈nt 〉 dt � �ns, (14)

where ṅs = dns/dt = λ̇∂λn
s and �ns = ns(λτ ) − ns(λ0).

Equation (14) resembles a thermodynamic inequality with ns(λ) playing the role of a state
function. Equation (14) tells us that transitions between stationary states are constrained by the
net change �ns in the value of this state function. As in the case of thermodynamic transitions,
this inequality becomes an equality in the limit of infinitely slow (reversible) variation of the
control parameter. In that limit, the system evolves through a sequence of stationary states, and
we can replace 〈nt 〉 by its value in the stationary state, ns(λt ). The two sides of equation (14)
are then identically equal.

When λ is varied at a finite rate, equation (14) expresses the ‘lag’ alluded to in [1] (see the
comments following equation (9) therein). For instance, if we change λ so as to make ns(λt )

increase monotonically with time, then throughout the process the value of nt will typically
be trying to ‘catch up’ with the (ever-increasing) value of ns(λt ). The ratio 〈nt 〉/ns will then
be less than 1, and therefore the left side of equation (14) will be less than the right side, as
predicted. A similar argument can just as easily be made if we change λ so as to cause ns to
decrease monotonically. More generally, equation (14) holds for the less obvious situation in
which ns(λt ) varies non-monotonically.
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The inequality expressed by equation (14) pertains to the ensemble average value of nt .
However, as pointed out in [1], equation (4) implies that there must be individual realizations n∗

t

for which
∫ τ

0 (ṅs/ns)n∗
t dt > �ns . In the context of other fluctuation and nonequilibrium work

theorems, realizations of this sort are said to ‘violate’ the second law of thermodynamics2,
and have been observed in recent experimental tests of those theorems [4]. Intuitively, we
expect such realizations to become increasingly rare with system size. In particular, in the
thermodynamic limit we expect that statistical fluctuations can be ignored altogether, and
the behaviour of the system during any particular realization is accurately represented by
the ensemble-average behaviour 〈nt 〉. In that case we can drop the angular brackets in
equation (14): ∫ τ

0

ṅs

ns
nt dt � �ns. (15)

If statistical fluctuations in nt are indeed negligible (as we expect in the thermodynamic
limit), then the evolution nt can be described by a deterministic rate equation. This rate
equation should have the property that equation (15) is satisfied for any schedule λt . Let us
now verify that this is the case, for a particular, natural choice of how the transition rates scale
with system size.

We will frame our discussion in the context of the previously mentioned example of the
birth and death of particles inside a two-dimensional box, and we will treat the area of the
box, A, as the scale parameter that defines system size. Since we are restricting ourselves to
the case of Poissonian stationary distributions, the coefficients νn and γn are specified by a
function fn and a constant ns , as per equation (10). (Both fn and ns can depend parametrically
on λ.) Let us now assume that these scale as follows with A:

ns = ρsA, fn = f̂
( n

A

)
, (16)

where ρs does not depend on A, and f̂ (·) is a smooth and positive function of its argument.
In terms of the particle density ρ = n/A, equation (10) becomes

νn → ν̂(ρ) = ρsf̂ (ρ), γn → γ̂ (ρ) = f̂ (ρ), (17)

where the arrows indicate the thermodynamic limit: A, n → ∞, with ρ being fixed. With
this scaling, the density of particles remains fixed as the area of the box becomes large, and
both the birth rate density ν̂ and the death probability rate γ̂ are functions of the density of
particles rather than the size of the system. This is the sort of scaling ordinarily associated
with extensive thermodynamic systems.

From equation (17) we have the following rate equation for the particle density, in the
thermodynamic limit:

ρ̇ = ν̂(ρ) − γ̂ (ρ)ρ (18)

= −(ρ − ρs)f̂ (ρ) ≡ V (ρ). (19)

The term ν̂ accounts for the continual birth of new particles, while γ̂ ρ accounts for the death
of old ones.

Since f̂ (ρ) is smooth and positive, the dynamics defined by equation (18) have a unique
fixed point at ρ = ρs : V (ρ) < 0 whenever ρ > ρs , and V (ρ) > 0 whenever ρ < ρs . It
immediately follows that

V (ρ) ln(ρs/ρ) � 0. (20)

2 The term is used loosely, and does not imply that the second law, properly understood, has in any way been
overthrown!
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Now let ρs and f̂ (ρ) depend explicitly on a control parameter λ. Consider the scenario
to which equation (14) is meant to apply: we begin in the stationary state corresponding to an
initial value of the control parameter, then we allow the system to evolve as this parameter is
varied with time. As above, we let λt denote the externally imposed time dependence of the
control parameter, and the initial and final times are taken to be t = 0 and t = τ . Our analysis
will be facilitated by imagining that the system continues to evolve after the ‘final’ time τ ,
with the control parameter held fixed: λt = λτ for t � τ . Thus, the system both begins and
ends in stationary states:

ρ0 = ρs(λ0), ρ∞ ≡ lim
t→∞ ρt = ρs(λτ ). (21)

Now define a function

U(ρ, λ) ≡ ln ρs(λ) − ln ρ. (22)

Equation (20) is then

U(ρ, λ)V (ρ, λ) � 0, (23)

which is valid for all values of ρ and λ. For ρt evolving under equation (18), consider the
integral

I =
∫ ∞

0
Ut ρ̇t dt =

∫ ∞

0
UtVt dt � 0, (24)

where Ut is short for U(ρt , λt ) and similarly Vt = V (ρt , λt ). Integrating the first expression
for I by parts, we get

I = U∞ρ∞ − U0ρ0 −
∫ ∞

0

(
d

dt
Ut

)
ρt dt (25)

=
∫ ∞

0

(
ρ̇t

ρt

− ρ̇s

ρs

)
ρt dt (26)

= �ρs −
∫ ∞

0

ṅs

ns
ρt dt, (27)

where ρ̇s ≡ λ̇∂λρ
s is the rate of change of ρs under the imposed schedule for varying the

control parameter, and �ρs ≡ ρs(λτ ) − ρs(λ0) = ρ∞ − ρ0 is the net change in the particle
density. The two boundary terms on the right side of the first line vanish (U0 = U∞ = 0, by
equations (21) and (22)), and we have used the definition of U to rewrite the remaining integral
in the form shown in the second line. To get to the third line, we have used ρs = ns/A and
equation (21). Since I � 0 (equation (24)), we finally get∫ τ

0

ṅs

ns
ρt dt � �ρs, (28)

where we have used the fact that λ is held fixed (hence ṅs = 0) for t > τ to change the upper
limit of integration. Multiplying both sides by A, we arrive at equation (15).

For sufficiently large systems, equation (15) can thus be derived in two different ways. In
the first approach, this inequality emerges as a consequence of Seifert’s fluctuation theorem
(equation (4)). In the second approach, we derived equation (15) directly from a deterministic
rate equation. In both cases, we made use of the assumption that the stationary distribution
is Poissonian. For the derivation based on the fluctuation theorem, this assumption gave
us an explicit expression for ε(n; λ) (equation (12)), while for the derivation using the rate
equation, the Poissonian assumption implied a useful relation between the birth and death rates
(equation (17)). Note that in the latter case the assumption can be relaxed considerably. For
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a process governed by the rate equation ρ̇ = ν̂ − γ̂ ρ ≡ V (ρ), let us assume only that the
functions ν̂(ρ; λ) and γ̂ (ρ; λ) are such that this process has a unique fixed point ρs(λ) for
every value of the control parameter λ. This assumption is sufficient to give us equation (20),
and therefore equation (15); we do not need to further assume that ν̂ and γ̂ are related by
equation (17).

The analysis here and in [1] is mathematical rather than physical. Equation (1) can be
used to model abstract processes for which concepts such as thermal equilibrium have no
particular relevance, as emphasized by the example of the birth and death of particles in a box.
However, there certainly are situations in which equation (1) describes processes for which
thermodynamic concepts are pertinent. In [1], Seifert mentions simple chemical reactions
that can be modelled with this master equation, and points out that the stationary states in
this case can be either states of thermal equilibrium or genuine nonequilibrium stationary
states. Shibata [2] has also considered a general framework for studying transitions between
nonequilibrium steady states in chemical reaction systems. In this framework, N independent
chemical species interact with one another, and also with M species whose concentrations
are controlled externally. The instantaneous state of the system is described by a vector
(n1, . . . , nN) specifying the populations of the independent species, and evolving under a
multivariate master equation. Equations (13) and (19) of [2] are analogues of equations (4)
and (11) above3. It would be interesting to see whether the central inequality of [2]
(equation (19) therein) could be derived from a set of coupled rate equations.

Shibata’s work was motivated by Oono and Paniconi’s steady-state thermodynamics
(or SST ) [5]. Whereas classical thermodynamics is organized around the concept of
equilibrium states, SST is a phenomenological framework in which the state space also
includes nonequilibrium steady states. In particular, Oono and Paniconi have suggested that
transitions between nonequilibrium steady states are governed by an inequality similar to
the Clausius inequality of classical thermodynamics. Shibata’s analysis of chemical reaction
systems supports this hypothesis [2], as does the work of Hatano and Sasa [6, 7], who have
considered systems evolving under stochastic Markov and Langevin processes. Recently, the
predictions of [7] have been confirmed by Trepagnier and coworkers [8] in experiments using
optically dragged microspheres. Finally, Sasa and Tasaki [9] have further developed the basic
philosophy of Oono and Paniconi’s approach, by carefully considering specific examples of
nonequilibrium steady states.

The basic set-up is the same throughout [1, 2, 6–9]: a system is made to evolve from one
nonequilibrium steady state to another by the variation of one or more control parameters.
(These parameters might be, for instance, the concentrations of chemical species [2], or the
velocity of laser tweezers [8].) In all these situations the response of the system satisfies an
equality of the form 〈e−Y 〉 = 1; this in turn implies the inequality 〈Y 〉 � 0, by the convexity
of the exponential function4. While the physical meaning of the quantity Y depends on the
specific context, we always obtain Y = 0 when the parameters are varied infinitely slowly
(see the discussion following equation (14), and also [2, 6–9]). This suggests that the
magnitude of Y reflects the degree of irreversibility of the process. More intuitively, Y can be
viewed as a measure of the net amount of lag that the system incurs during the process, as it
tries to keep up with ever-changing values of the external parameters. When these parameters

3 In Shibata’s framework, if we take N = 1 and if we assume that each stoichiometric coefficient c±l is either 0
or 1, then we recover the situation considered in [1] and in the present letter, for the case of Poissonian stationary
states.
4 An alternative derivation of this inequality, which makes use of the concavity of the logarithm function, is provided
in appendix C of [9].



Letter to the Editor L233

are varied slowly, the system evolves through a sequence of stationary states (and Y = 0);
when the parameters are varied rapidly, the system is typically unable to keep pace (Y > 0).

In classical thermodynamics, the inequalities that govern transitions between equilibrium
states can be derived from the assertion that the combined entropy of the system and its thermal
surroundings must never decrease. For the simple model systems studied theoretically and
experimentally in [1, 2, 6–9] as well as the present letter, transitions between stationary states
are also governed by inequalities, but these inequalities do not seem to be fundamentally
related to some global quantity whose value never decreases. Rather, they are a mathematical
expression of lag as discussed above. Whether these sorts of inequalities apply more
generally—for instance, when the system does not evolve as a Markov process—remains
an open and very interesting question in nonequilibrium statistical mechanics.
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